p1(s1(x)) -> x
fact1(0) -> s1(0)
fact1(s1(x)) -> *2(s1(x), fact1(p1(s1(x))))
*2(0, y) -> 0
*2(s1(x), y) -> +2(*2(x, y), y)
+2(x, 0) -> x
+2(x, s1(y)) -> s1(+2(x, y))
↳ QTRS
↳ DependencyPairsProof
p1(s1(x)) -> x
fact1(0) -> s1(0)
fact1(s1(x)) -> *2(s1(x), fact1(p1(s1(x))))
*2(0, y) -> 0
*2(s1(x), y) -> +2(*2(x, y), y)
+2(x, 0) -> x
+2(x, s1(y)) -> s1(+2(x, y))
*12(s1(x), y) -> +12(*2(x, y), y)
+12(x, s1(y)) -> +12(x, y)
*12(s1(x), y) -> *12(x, y)
FACT1(s1(x)) -> P1(s1(x))
FACT1(s1(x)) -> *12(s1(x), fact1(p1(s1(x))))
FACT1(s1(x)) -> FACT1(p1(s1(x)))
p1(s1(x)) -> x
fact1(0) -> s1(0)
fact1(s1(x)) -> *2(s1(x), fact1(p1(s1(x))))
*2(0, y) -> 0
*2(s1(x), y) -> +2(*2(x, y), y)
+2(x, 0) -> x
+2(x, s1(y)) -> s1(+2(x, y))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
*12(s1(x), y) -> +12(*2(x, y), y)
+12(x, s1(y)) -> +12(x, y)
*12(s1(x), y) -> *12(x, y)
FACT1(s1(x)) -> P1(s1(x))
FACT1(s1(x)) -> *12(s1(x), fact1(p1(s1(x))))
FACT1(s1(x)) -> FACT1(p1(s1(x)))
p1(s1(x)) -> x
fact1(0) -> s1(0)
fact1(s1(x)) -> *2(s1(x), fact1(p1(s1(x))))
*2(0, y) -> 0
*2(s1(x), y) -> +2(*2(x, y), y)
+2(x, 0) -> x
+2(x, s1(y)) -> s1(+2(x, y))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDP
+12(x, s1(y)) -> +12(x, y)
p1(s1(x)) -> x
fact1(0) -> s1(0)
fact1(s1(x)) -> *2(s1(x), fact1(p1(s1(x))))
*2(0, y) -> 0
*2(s1(x), y) -> +2(*2(x, y), y)
+2(x, 0) -> x
+2(x, s1(y)) -> s1(+2(x, y))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
+12(x, s1(y)) -> +12(x, y)
POL(+12(x1, x2)) = 3·x2
POL(s1(x1)) = 1 + x1
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ PisEmptyProof
↳ QDP
↳ QDP
p1(s1(x)) -> x
fact1(0) -> s1(0)
fact1(s1(x)) -> *2(s1(x), fact1(p1(s1(x))))
*2(0, y) -> 0
*2(s1(x), y) -> +2(*2(x, y), y)
+2(x, 0) -> x
+2(x, s1(y)) -> s1(+2(x, y))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
*12(s1(x), y) -> *12(x, y)
p1(s1(x)) -> x
fact1(0) -> s1(0)
fact1(s1(x)) -> *2(s1(x), fact1(p1(s1(x))))
*2(0, y) -> 0
*2(s1(x), y) -> +2(*2(x, y), y)
+2(x, 0) -> x
+2(x, s1(y)) -> s1(+2(x, y))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
*12(s1(x), y) -> *12(x, y)
POL(*12(x1, x2)) = 3·x1
POL(s1(x1)) = 1 + x1
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ PisEmptyProof
↳ QDP
p1(s1(x)) -> x
fact1(0) -> s1(0)
fact1(s1(x)) -> *2(s1(x), fact1(p1(s1(x))))
*2(0, y) -> 0
*2(s1(x), y) -> +2(*2(x, y), y)
+2(x, 0) -> x
+2(x, s1(y)) -> s1(+2(x, y))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
FACT1(s1(x)) -> FACT1(p1(s1(x)))
p1(s1(x)) -> x
fact1(0) -> s1(0)
fact1(s1(x)) -> *2(s1(x), fact1(p1(s1(x))))
*2(0, y) -> 0
*2(s1(x), y) -> +2(*2(x, y), y)
+2(x, 0) -> x
+2(x, s1(y)) -> s1(+2(x, y))